

# LEONUMC

## Summary Report

| Author         | : | S. Redant        |
|----------------|---|------------------|
| Document no.   | : | P61285-IM-DL-004 |
| Status         | : | Issue 1.1        |
| Date           | : | 18 May, 2004     |
| ESTEC Contract | : | 16201-02-NL-LVH  |

#### ESTEC Technical Management: Roland Weigand

European Space Agency Contract Report

The work described in this report was done under ESA contract. Responsibility for the contents resides with the authors or organization preparing it.

— Confidential —

#### **Review list**

| name               | signature | Date |
|--------------------|-----------|------|
| S. Redant (Imec)   |           |      |
| R. Weigand (ESTEC) |           |      |
|                    |           |      |

#### **Distribution list**

R. Weigand ESA - ESTEC:

S. Redant (Imec/Invomec) K. Stinkens (Imec/Invomec) IMEC:

- - J. Roggen (Imec/BD)

#### **Document history record**

| issue | Date       | description of change                                                |
|-------|------------|----------------------------------------------------------------------|
| 1.0   | 10-06-2003 | First version                                                        |
| 1.1   | 18-05-2004 | - Wording: "Clock skew problems" changed into "hold time violations" |
|       |            | - Added temperature and frequency test results                       |
|       |            | - Reduced sizes of pictures, to get a smaller document               |

### Table of contents

| 1 | LEONUMC PROJECT OVERVIEW | 1 |
|---|--------------------------|---|
| 2 | LEONUMC FEATURES         | 2 |
| 3 | LEONUMC TESTS            | 4 |

### Purpose

This document describes the overall LEONUMC project.

### List of figures

| Figure 1: Floorplan         | 3 |
|-----------------------------|---|
| Figure 2: The layout        | 3 |
| Figure 3: Load board, front | 4 |
| Figure 4: Load board, back  | 4 |

2

#### List of tables

Table 1: LEONUMC features

#### List of abbreviations

| ATPG  | : Automatic Test Pattern Generation           |
|-------|-----------------------------------------------|
| CMOS  | : Complementary Metal Oxide Semiconductor     |
| CTS   | : Clock Tree Synthesis                        |
| ESTEC | : European Space Research & Technology Centre |
| GDSII | : Graphical Data Stream                       |
| I/O   | : Input and output                            |
| P&R   | : Place & Route                               |
| PG    | : Power and Ground                            |
| PLL   | : Phase-Locked Loop                           |
| RAM   | : Random Access Memory                        |
| SEU   | : Single Event Upset                          |
| TDF   | : Top Design Format                           |
| TMR   | : Triple Module Redundancy                    |
| UMC   | : United Micro-electronic Cooperation         |
| VST   | : Virtual Silicon Technologies                |
| μm    | : micrometer                                  |
|       |                                               |

### 1 LEONUMC project overview

To generate a layout of the LEON\_PCI design the following back-end work was performed:

- Scan chain insertion (by Imec);
- Scan Test vector generation (by Imec);
- Verilog to GDSII layout generation using Synopsys (former Avant!) Apollo software (by Imec), including Clock Tree synthesis (CTS);
- Parasitic extraction (by Imec);;
- Post-layout timing checks, simulation and timing sign-off, functional and test modes (by Estec)
- Electrical Rule Check (ERC), Design Rule Check (DRC), Layout Versus Schematic (LVS) check, Substrate - & Antenna checks;
- Manufacturing (via Imec-Europractice at UMC, Taiwan in a shuttle run);
- Test (via Imec- Europractice at Microtest, Italy).

The leon\_pci design uses standard cells and I/O cells of the libraries of Virtual Silicon Technologies (VST) and was be processed in the UMC 0.18  $\mu$ m CMOS technology. It was packaged in a CPGA 299, with a relatively small cavity size (shorter bonding wires).

The initial information handover went through some iteration. This is what we typically see with firsttime use for the Imec place & route service. Some of the problems are due to Synopsys Design Compiler quirks, some are due to design style or some place & route flow details that the customer is unaware of. A typical example is the clocking structure supported for clock tree synthesis (CTS).

## 2 LEONUMC features

| Libraries used (VST libraries available at no charge | via Imec- Europractice)         |  |  |
|------------------------------------------------------|---------------------------------|--|--|
| Core library                                         | UMCL18U250T2_2.4                |  |  |
| IO library                                           | UMCL18U350T2_1.1                |  |  |
| RAM libraries (one for each master)                  | UMCL18U410T2_1.2 for R128X32M4  |  |  |
|                                                      | UMCL18U410T2_1.2 for R2048X34M8 |  |  |
|                                                      | UMCL18U410T2_1.2 for R256X29M4  |  |  |
|                                                      | UMCL18U420T2_1.3 for RF168X39M1 |  |  |
| PLL library                                          | UMCL18U800T2_2.1 for both PLLs  |  |  |
| Design Statistics:                                   |                                 |  |  |
| Pad/Core Limited                                     | Pad limited                     |  |  |
| Number of macro cells:                               | 14                              |  |  |
| Number of module cells:                              | 90456                           |  |  |
| Number of IO cells:                                  | 254                             |  |  |
| Number of bondpads:                                  | 256                             |  |  |
| Number of nets:                                      | 91673                           |  |  |
| Number of PLLs                                       | 2                               |  |  |
| Number of RAMs                                       | 14                              |  |  |
| Number of clock domains                              | 2 x 3 (TMR)                     |  |  |
| Number of synthesized non-clock high-fanout nets     | 1                               |  |  |
| Number of supply pins                                | V3IO and V0IO, 23 of each       |  |  |
|                                                      | VDD and VSS, 11 of each         |  |  |
| Chip Utilisation:                                    |                                 |  |  |
| Total macro cell area:                               | 2180018.71 μm²                  |  |  |
| Total standard cell area:                            | 3552696.10 μm²                  |  |  |
| Total pad cell area:                                 | 2726800.00 μm²                  |  |  |
| Core size:                                           | 2679.60 μm by 2679.60 μm        |  |  |
| Chip size:                                           | 4312 μm by 4312 μm              |  |  |
| Number of equivalent gates:                          | 291.2 eq. Kgates                |  |  |
| Number of transistors:                               | 2565075                         |  |  |
| Number of standard cell instances                    | 90456                           |  |  |

Table 1: LEONUMC features



Figure 1: Floorplan



Figure 2: The layout

## 3 LEONUMC tests

The LEONUMC devices were tested with 3 sets of functional vectors using the load board depicted in Figure 3: Load board, front and Figure 4: Load board, back. Scan testing had to be abandoned due to hold time violations in the chains.

Frequency/Voltage Characterisation, Leakage current measurements and PLL output waveform measurements were also performed.

All in all 51 components were tested. 40 were functional.

A frequency versus supply voltage characterization of 3 samples showed correct operation up to 100 MHz at nominal supply voltage.

A temperature characterization (0, 25, 125 degrees Celsius) passed all test at low and ambient temperature whereas at high temperature, some current leakage failures were observed at high input level and voh-vol functional checks are failing due to slight variation of output levels.



Figure 3: Load board, front



Figure 4: Load board, back